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Post-quantum

Most of currently used public-key algorithms are vulnerable to
quantum cryptanalysis.

Sure, quantum computers are not there
yet but...

Things that take time:

Building secure and practical schemes

Getting confidence in the underlying assumption

Deploying the scheme outside of academia

Risks are too high and post-quantum security might be needed
right now
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Practical aspects

NIST post-quantum standardization project started in 2017, its
first round ended in early 2019

Performances will play a larger role in round 2
NIST (basically)

Performances are mostly critical on embedded devices:

Need for efficient implementations (libpqm4)

Need for side-channel countermeasures
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Masking

Values are split into N + 1 shares such that any set of N shares
does not reveal anything about the masked value

v =
⊕

vi
Boolean masking

v =
∑

vi
Arithmetic masking

In the following, a value v split in N + 1 shares will be written
(vi)0≤i≤N or (vi) for short
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qTESLA

Lattice-based Schnorr-like signature candidate in the NIST
project

Security assumption (Ring Learning With Errors) : In
Zq[X]/〈Xn + 1〉, it is hard to find s (or e) from t← a · s+ e

Parameters qTESLA-I qTESLA-III Description

n 512 1024 Dimension of the ring
q ≈ 222 ≈ 223 Modulus
E 1586 1147 Rejection parameter
S 1586 1233 Rejection parameter
B 220 − 1 221 − 1 Bound for y
d 21 22 Bits dropped in [·]M
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qTESLA

Disclaimer

The practical results of this work are based on the heuristic
parameter sets of qTESLA that where removed during the review
phase of this conference. Our masking scheme still applies but
the code has to be changed to match the submission.
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State of the art

Previously:

Masking of GLP + code + proofs (Eurocrypt 2018)

Masking of Dilithium + code + experiments (ACNS
2019)

Our work:

Masking of qTESLA

Optimization for order 1

Proofs in the ISW model

Public implementation in the code of the submission
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Idea of the scheme

Public parameter: a
Secret key: s, e
Public key: t← a · s + e

Sign(s,m):

1: do
2: y

r←− Y
3: c← H(ba · ye,m)
4: z← s · c + y
5: while Rejected(z)
6: and not WellRounded(a · y)
7: return z, c

Verify(z, c, t,m):

1: v← a · z− t · c = a · y − e · c
2: return 1 if c = H(bveM ,m) and

z is small else 0
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qTESLA sign(s,m)

1: counter ← 1
2: r

r←− {0, 1}κ
3: rand ← PRF(seedy, r,H(m))
4: y← ySampler(rand, counter)
5: a← GenA(seeda)
6: v← a · y mod±q
7: c← Enc(H([v]M ,m))
8: z← y + s · c

9: if z 6∈ Rq,[B−S] then
10: counter ← counter + 1
11: goto 4
12: end if
13: w← v − e · c mod±q
14: if ||[w]L||∞ ≥ 2d−1 − E
15: or ||w||∞ ≥ bq/2c − E then
16: counter ← counter + 1
17: goto 4
18: end if
19: return (z, c)
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Sensitive parts
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Modifications - PRF removal

If two different signatures use the same y, the secret key is
trivially revealed

Goal of the PRF is to avoid nonce reuse under the collision
resistance assumption

Nevertheless security is only based on the randomness of y

Since masking the PRF would be a significant overhead
and using a masking scheme is assuming having access to a
reasonable RNG, we removed the PRF.
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Modifications - Power of two modulus

qTESLA uses a prime q to instantiate its ring
Zq[X]/〈Xn + 1〉 to enable NTT-based algorithms for
polynomial multiplication

As pointed out in previous works, masked modular
arithmetic is very expensive

One solution is to use a power of two modulus as reduction
is a mask on shares

Polynomial multiplication is slower (Karatsuba) ... but is
not the bottleneck any more in a masked setting
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Main components to mask

ySampler→ already state of the art

PolynomialMul→ not needed since K ·
∑

i si =
∑

iK · si

RejectionSampling→ x ∈ [−B, . . . , B]

Rounding→ (w mod±q − [w]L)/2d

WellRounded→ |x| < bq/2c − E and |[x]L| < 2d−1
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Toolbox of gadgets

SecAnd((ai), (bi)) = (ci) s.t.
⊕

i ci = (
⊕

i ai)&(
⊕

i bi)

SecAdd((ai), (bi)) = (ci) s.t.
⊕

i ci = (
⊕

i ai) + (
⊕

i bi)

SecArithBoolModq((ai)) = (a′i) s.t (
⊕

i a
′
i) = (

∑
i ai)%q

FullXor((ai)) =
⊕

ai
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Masked Absolute Value

Use the good ol’ trick:

m← x >> 31

|x| ← (x + m)⊕m

1: (maski)0≤i≤N ← ((xi)0≤i≤N << (RADIX−k)) >> (RADIX−1))
2: (x′i)0≤i≤N ← Refresh((xi)0≤i≤N )
3: (xi)0≤i≤N ← SecAdd((x′i)0≤i≤N , (maski)0≤i≤N ))
4: (|x|i)0≤i≤N ← ((xi)0≤i≤N ⊕ (maski)0≤i≤N ) ∧ (2k − 1)
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Masked rejection sampling

Compare with subtract and shift:

t← |x| − (BOUND+1)

b← t >> 31

1: (SUPi)0≤i≤N ← (−B + S − 1, 0, ..., 0)
2: (a′i)0≤i≤N ← GenSecArithBoolModq((ai)0≤i≤N )
3: (xi)0≤i≤N ← AbsVal((a′i)0≤i≤N , log2 q)
4: (xi)0≤i≤N ← SecAdd((xi)0≤i≤N , (SUPi)0≤i≤N )
5: (bi)0≤i≤N ← ((xi)0≤i≤N >> RADIX− 1)
6: return rs := FullXor((bi)0≤i≤N )
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Masked rounding

[·]L : Z→ Z, w 7→ w mod±2d

[·]M : Z→ Z, w 7→ (w mod±q − [w]L)/2d

where x mod±q denotes the unique integer xct ∈ (−q/2, . . . , q/2]
such that xct ≡ x (mod q)

Z/8Z = {−3,−2,−1, 0, 1, 2, 3, 4}
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Masked rounding

Compute w mod±q:

w = w % q
if (w > q/2) then w −= q

Subtract [w]L and divide by 2d:

w += 2d−1 − 1
w >>= d

Second part analogous to computing dxc as bx + 0.4999 . . .c
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Masked Rounding

1: (MINUS Q HALFi)0≤i≤N ← (−q/2− 1, 0, ..., 0)
2: (CONSTi)0≤i≤N ← (2d−1 − 1, 0, ..., 0)

/* w = w % q */
3: (a′i)0≤i≤N ← GenSecArithBoolModq(ai)0≤i≤N

/* if (w > q/2) then w −= q */
4: (bi)0≤i≤N ← SecAdd((a′i)0≤i≤N , (MINUS Q HALFi)0≤i≤N )
5: b0 = ¬b0
6: (bi)0≤i≤N ← ((bi)0≤i≤N >> RADIX− 1) << log2 q
7: (a′i)0≤i≤N ← (a′i)0≤i≤N ⊕ (bi)0≤i≤N

/* w += 2d−1 − 1 */
8: (a′i)0≤i≤N ← SecAdd((a′i)0≤i≤N , (CONSTi)0≤i≤N )

/*w >>= d */
9: (a′i)0≤i≤N ← (a′i)0≤i≤N >> d

10: return u := FullXor((a′i)0≤i≤N )
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Cycle count of individual gadgets

Masking order Order 1 Order 2 Order 3 Order 4 Order 5

RG 98 410 840 1 328 2 416

MaskedRound 164 1 400 2 454 4 314 6 142

MaskedWR 280 2 080 3 914 6 432 9 034

MaskedRS 178 1 440 2 496 4 432 6 254

SecAdd 44 294 592 870 1 192

SecAnd 20 28 44 70 96

GenSecArith-
BoolModQ

96 786 1 152 3 148 3 500

SecBoolArith 20 42 108 288 884
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Fully masked signature

Masking order Unmasked Order 1 Order 2 Order 3 Order 4 Order 5

qTESLA-I (RNG off) 645 673 2 394 085 7 000 117 9 219 826 16 577 823 24 375 359

qTESLA-I (RNG on) 671 169 2 504 204 13 878 830 24 582 943 39 967 191 59 551 027

qTESLA-I (RNG on)
Scaling

1 ×4 ×21 ×37 ×60 ×89

qTESLA-I CortexM4 11 304 025 23 519 583 - - -

Cycle count on Intel i7 laptop and ARM Cortex-M4.

RNG off means rand uint32() always returns 0.
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Number of calls to rand uint32()

Masking order Order 1 Order 2 Order 3 Order 4 Order 5

qTESLA-I 85 810 1 383 459 2 761 525 4 923 709 7 638 422

qTESLA-III 115 392 1 826 545 3 721 800 6 482 130 10 005 714

Order 2 masking already needs over 4MB of randomness !
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Conclusion

Overhead is huge for more than 2 shares

Simpler rounding would make masking easier

Power of two modulus seems to help a lot

Computational overhead mainly due to randomness
generation

Design of the signature could be improved (for masking)
but lattices are quite masking friendly
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